Nuclear Energy Tutorial
Nuclear energy will yield you tonnes of energy as a reward, if you are competent enough. If not, you may just leave a giant crater in your home.
Contents
Step 2: Building Your First Reactor
A Nuclear Reactor is expensive to build, relying on energy-intensive materials like Advanced Alloy Plates. Don't expect to build one in your first week.
Step 3: Finding Your 3-Mile Island
Siting your Nuclear Reactor is crucial! While it can be removed using a Wrench, the possibility of destroying your precious machine in the process makes this a risky proposition, use an Electric Wrench in lossless mode to ensure that you get your reactor back (Hold "M" and right-click). Ideally you'll have a lake or ocean nearby.
Step 4: Heavy Water
In SMP environments, you may wish to site your reactor somewhere more... secluded. Building a Reactor Containment Vessel will be essential. Nothing less than Reinforced Stone should be used in the construction. Using buckets to place water as you build should allow you to create the necessary cube of water surrounding your Reactor. Use a Reinforced Stone Door for access. Ensure that there is sufficient blast shielding to minimize destruction of property in the case of an "accident"!
Step 7: The Soothing Hum of Power
So, here is the point of the Nuclear Reactor. By placing 1 more Uranium Cell into the Reactor and surrounding it with Coolant Cells. Each Cell will provide 2 million EU, but at a very slow rate of 10 EU/t - not nearly enough for even a few basic machines.
Summary
If the proper precautions are taken, a Nuclear explosion should never happen. In the wrong situation though, a Nuclear disaster can leave you with a pretty impressive hole in the ground where your prized workshop used to be. Always use Reinforced Stone for your reactor walls for maximum protection.
Advanced Engineering
Nuclear reactor setups are organized by Mark, then efficiency.
To understand the advanced mechanics visit the Industrial Craft Forums for this thread.
Mark definitions
- Mark I: Can be run repeatedly indefinitely (The -O means it requires external cooling, -I does not)
- Mark II: Can be run repeatedly for a limited number of times before requiring cooldowns (-# are the number of cycles it can complete)
- Mark III: Cannot complete a cycle (but can go longer than 10% of a cycle) before requiring a cooldown period.
- Mark IV: Same as Mark III, except some components will need replacing before the next cycle continues.
- Mark V: Cannot run 10% of one cycle before requiring a cooldown period
Efficiency Definitions
- EE: Each U-Cell power-ticks exactly once per time-tick.
- ED: The average U-Cell power-ticks between 1 and 2 times per time-tick.
- EC: The average U-Cell power-ticks between 2 and 3 times per time-tick.
- EB: The average U-Cell power-ticks between 3 and 4 times per time-tick.
- EA: The average U-Cell power-ticks more than 4 times per time-tick.